Home | Survey | Payment| Talks & Presentations | Job Opportunities
Journals   A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Mathematica Applicata
1001-9847
1995 Issue 3
liang zhong sheng wu xiang hu zuo yong de fan ying kuo san mo xing ji jie de tao lun
zhang wei fu ; lv rong qing ;
..............page:371-373
duo yuan zheng xi shu duo xiang shi yin shi fen jie de yi zhong li lun he suan fa
Yu Xin guo Lai Chusheng Huang Wenqi
..............page:339-344
duo zhong xiang lin jiao lian zhen dang qi xi tong de ting zhen
Zhang Weijiang He Ming
..............page:333-338
yi lei she dong xi tong de poincar fen cha yu ji xian huan
Quan Hongshun
..............page:253-261
xiu zheng de wan quan jin si fa de gai jin xing shi ji qi ying yong
ZhouMing ru Zhang Baoshan
..............page:317-321
pu bian xing de fei xian xing shuang qu xing fang cheng
xie han guang ; sun fang yu ;
..............page:376-378
fei xian xing fa zhan fang cheng jie de jian jin xing de gou zao guo cheng
Xu Zongben Jiang Yaolin
..............page:328-332
guan yu er wei he zuo zi zhi xi tong de bi gui xian
xiao jian ;
..............page:374-375
guan yu mle zai jian jin zhong wei wu pian yi yi xia de jian jin you xiao xing
Liang Hua and Ye Baiqihg
..............page:325-327
r~n(n 3) shang qun ti yi chuan xue zhong de xuan ze qian yi mo xing
Duan Zi-wen Zhou Li
..............page:363-370
er ceng tu gui hua de ji ben xing zhi
Wang Xianjia Feng Shangyou
..............page:283-288
xian xing ju li kong jian de yi zhi tu xing yu zi fan xing
Wu Junde Yang Dehai Qu Wenbo In order to study approximation problems. Sastry and others in [1] introduced uniform convexity I;I and I in metric linear spaces. Wu congxin and others in [2] proved;under the strict contraction property condition;that the metric linear spaces with U. C. I . are reflexive and they asked whether the condition can be removed. This note give a sure answer and proved metric linear spaces with U. C. I are reflexive. So main theorem in [2] is only a special case of ours.
..............page:322-324
ren yi wei shu de qiang zu ni fei xian xing bo dong fang cheng ( ) chu bian zhi wen ti
Liu Yacheng Wang Feng Liu Dacheng
..............page:262-266